
5 
 

 
 

 

 

 

 

Competitive Intelligence and Complex Systems 
 

Brigitte Gay 

 
University of Toulouse 

Toulouse Business School, France 

b.gay@esc-toulouse.fr 
 

Received June 1, revised form 10 September, accepted 27 September 2012 

ABSTRACT: The economy reflects a dynamic interaction of a large number of different organizations and 

agents. A major challenge is to understand how these complex systems of interacting organizations form and 

evolve. The systemic perspective presented here confers an understanding of global effects as coming from these 

ever changing complex network interactions. Another main endeavor is to capture the interplay between 

individual firms’ alliance strategies and the dynamic interactions between all firms. In this paper, we advocate 

the use in competitive intelligence of a complex systems approach originating in statistical physics to understand 

the intricate meshes of interfirm interactions that characterize industries today, their dynamics, and the role 

major organizations play in these industries.  

KEYWORDS: Competitive intelligence, real-world networks, statistical physics, VisuGraph 

Introduction 

Because we need in competitive intelligence (CI) to 

analyze massive data in real time, using network 

visualization techniques to explore intricate 

interactions among organizations or agents is not 

enough. Large data streams require quantitative 

tools. The complex network approach developed in 

statistical physics is particularly adapted to the 

analysis of large networks. We advocate that recent 

developments in this field would help address the 

many issues CI is confronted with at this level.  

Physicists using a complex network approach have 

tried to infer the structural properties of large 

empirical networks. Statistical regularities have 

been observed in very diverse real-world networks 

(communication, biological, or social networks, 

etc.) when they were compared with network 

models generated with different stochastic 

algorithms, in particular small-world and scale-free 

network models (Watts and Strogatz, 1998; 

Barabasi and Albert, 1999). Progress in statistical 

physics was hence initially made with the 

identification of a series of unifying principles and 

statistical properties found in most empirical 

networks examined. Researchers anticipated that 

these studies would result in a better knowledge of 

the evolutionary mechanisms of complex networks 

as well as of their dynamical and functional 

behavior.  

We know however that the onset and outcomes of 

growing networks can be very different. In addition 

complex networks have heterogeneous structures 

that vary and extend over many possible levels. 

Comparing interfirm network structures across 

different industries has indeed recently revealed 

that though real-world growing networks may 

apparently share many properties they can be in fact 

very different (Gay, 2011). Moreover, they can 

deploy overtime very dissimilar architectures and 

switch from one particular structure to an altogether 
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different one. Major players also operate differently 

in the systems analyzed (Gay, 2011). 

Researchers must learn to evaluate the differences 

in the processes that take place on complex 

networks and start understanding the idiosyncrasies 

of both systems and agents’ behaviors. A recent 

shift in research on complex networks is to 

investigate more fully differences in network 

structures that may epitomize different behaviors. 

In this way the subtle dynamics that shape the 

different systems are also investigated. 

In particular, new contributions on structural 

properties have been made thanks to the 

development and use of novel metrics in statistical 

physics. They have for example provided evidence 

for the presence in networks of hierarchies (when 

applying k-core decomposition methods), 

communities ordering, and assortative mixing 

(Barrat et al., 2004; Girvan and Newman, 2002; 

Milo et al., 2002; Newman, 2002; Seidman, 1983; 

Shen-Orr et al., 2002). We use here some of these 

metrics to try to establish an understanding that 

complex webs of interactions that characterize 

industries today, as well as their evolution and 

dynamics, must also be considered a fundamental 

goal in competitive intelligence. To achieve this, we 

analyze the alliance networks of firms interacting in 

two different industries, the pharmaceutical 

industry (network 1) and the equity industry 

(network 2). We demonstrate that the two networks 

maintain many differences and that understanding 

networks dynamics is essential. 

1. Looking for statistical ‘irregularities’ in 

network structures and firm position 

Networks are conceptualized here graph-

theoretically, i.e. as objects containing nodes and 

links. A network is thus, in very general terms, a 

graph whose nodes identify the elementary 

constituents of the system, the interconnections 

between these constituents being represented by the 

linkages in the network. The nodes here are firms 

and the links actual contracts between firms. To 

assess the nature of the particular structure of the 

two experimentally observed interfirm alliance 

networks, we use 5 main network properties:  

 degree,  

 degree centralization (Freeman, 1979),  

 the k-core (Seidman, 1983),  

 the assortative coefficient (Newman, 

2002), and  

 degree modularity (Newman, 2006).  

To capture the dynamics of the processes, we use 

different time windows. We then use the resulting 

adjacency matrices to construct the network metrics 

utilized. We study network 1 from 1998 to 2007 

and network 2 from 1993 to 2008. 

Fig.1 shows the topology of the two networks 

(static data). The two graphs make evident the 

difficulty of analyzing intricate meshes of interfirm 

transactions. Both graphs also show that some firms 

or hubs (larger nodes on the graph) make many 

more transactions than others.  

The fact that there is a power structure in each 

industry is manifested, though we know nothing 

more about this phenomenon here, past the fact that 

some players in each industry deal a lot more than 

others. We do not know about its consequences, its 

level of influence on the industry in general and on 

its members. 
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Fig. 1. Network 1 (Left), Network 2 (Right). Node size is scaled to standardized network degree, or deal number, 

in the total network, reflecting variation in the extent of degree connectivity among the organizations. The 

darker lines indicate the presence of repeat ties between firms. Network structure in network 2 is highly 

cohesive. The presence of a hierarchical structure is also apparent in both networks. Hubs are tightly 

interconnected in Network 2, but not in Network 1. 

We will now use some network metrics to see if we 

can learn more from the power structures we 

observe and to refine the analysis. 

1.1. Analysis of Network 1 

The first metric we used is degree centralization. 

The degree of a node in a network is the number of 

links connecting it with other nodes. Degree 

centralization indicates how centralized an entire 

network is and is hence a macro-level measure. It is 

calculated as the sum of the differences between the 

maximum and each individual’s centrality score, 

normalized to range from 0 to 1 by dividing by the 

theoretical maximum centralization. A star network 

has maximum centralization, with value 1. Our data 

reveal that the interfirm network power structure 

varies and actually weakens over time, as 

demonstrated by variations in the centralization 

index (Fig. 2). Network 1 is first highly centralized, 

with few hubs. More hubs however increasingly 

participate in the network, though to an ever less 

extent and the network power structure hence 

weakens progressively. It is widely assumed that 

most social networks have a ‘community structure’, 

where nodes can be part of a tight group, while 

others may act as bridges between them. We use a 

new community centrality measure that identifies 

the participation of each node (central or not) 

within one or more communities in a network, 

defined by the leading eigenvectors of a 

characteristic matrix or ‘modularity’ matrix of the 

network (Newman, 2006). This measure helps to 

better understand how hubs/central firms operate 

within the different structures.  

In the first period, central players have small values 

for their community centrality, indicating that they 

operate globally (Fig. 3). The situation is however 

reversed in the latest period as central organizations 

have higher values for their community centrality. 

Firms with a higher degree tend then to exert 

control within communities rather than across the 

overall network structure. The network power 

structure thus evolves from globally to locally 

effective.  
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Fig. 2. Decrease in degree centralization overtime – Network

Fig. 3. Change in community degree - Network 1

We also measured degree assortativity to link 

organizational and in particular hubs behavior to the 

structuring of the interfirm network. The assortative 

coefficient measures degree correlations. In other 

words, correlated graphs are classified as 

assortative if nodes tend to connect to their 

connectivity peers, and as disassortative if nodes 

with low degree are more likely connected with 

highly connected nodes. Networks of neutral 

mixing of their degree show none of these 

tendencies. Correlations are measured by the 

assortativity coefficient r, or Pearson correlation 

coefficient for the degrees at either side of an edge 

(Newman, 2002). The theoretical range is [-1, 1]. 
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We find strong variation with assortativity in the 

network (Table 1). We find a value for the 

assortativity coefficient of r = - 0.483 in the first 

period indicating strong disassortative mixing, i.e., 

hubs are primarily connected to less connected 

firms. Hubs are thus not linked together. Though 

the network remains disassortative, r increases 

continuously until the network shows neutral 

mixing in the latest period with r = 0,015. Firms 

then interact with all kinds of firms, similar or not. 

Linkages of hubs among themselves are therefore 

not a feature of the interfirm network as it is never 

assortative.  

1.2 Analysis of Network 2  

 

Centralization data also establishes that, as network 

1, network 2 is dependent upon hubs for (Fig. 4). 

However we observe 2 peaks, the network is first 

highly centralized; centralization decreases 

afterwards and then regains some momentum 

though power is at that time distributed among 

more central organizations.  

These variations in the network power structure 

constitute key points that alert to change, individual 

as well as systemic. To probe these modifications 

further, we used the k-core decomposition method.  

 

Fig. 4. Network 2 centralization 

 

Network 1 r coefficient 

Period 1 -0,483 

Period 2 -0,306 

Period 3 -0,103 

Period 4 0,015 

 

Table 1: Assortativity coefficient  

The k-core decomposition is based on a recursive 

pruning of the least connected nodes (Fig. 5). The 

nodes displayed in the most internal of the shells of 

the network are those forming the central core of 

the network. Applying this method allow us to 

identify the inherent layer structure of a network 

and thus gain information about its hierarchical 

structure and the placement of hubs (globally 

central if in the innermost k-cores and locally 

central if hubs are merely members of the outer k-

cores). 

Applying the k-core decomposition method, we 

investigated which firms made it to the central core 

by looking at the correlation between the degree of 

the nodes and what is called the coreness value. We 

determined the existence of 22 consecutive k-cores.  
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We find that hubs with the highest degree are 

within the inner shell of the network (only 2 hubs 

out of the first 58 firms with high degree are in the 

18- and 20- core respectively for the period 1989-

2008, while all others belong to the innermost set of 

nodes, the 22-core; 89% of the nodes in the inner 

core are hubs). There is therefore a clear global 

hierarchical structure. There is no k-core 

fragmentation; the remaining nodes forming a k-

core systematically belong to the same connected 

component (static and temporal analysis). 

Fig 5 (bottom) reveals the importance of examining 

dynamic displays of interactions, including the 

links between major players in the innermost k-

core. We know the extent of the involvement of 

each hub in the system during each period (5 

periods in total) as the nodes have been replaced by 

color-coded histograms that account for their 

degree centrality (standardized total number of 

transactions per firm) at each time point. 

VisuGraph visualization software allows 

positioning nodes according to their activity as they 

occur by (Gay and Loubier, 2009, 2012). We thus 

find that some hubs are highly active at all times 

whereas others have dropped their activity 

significantly after the second period. Interestingly, 

from period 4 onwards, more hubs become 

extremely active, thus explaining away the 

centralization data in Fig. 4. 

An easy way to pursue the analysis is to ‘tag’ the 

nodes/firms with additional data such as firms’ date 

of creation, number of employees, market 

capitalization, country of origin, etc.  

In Fig. 6, we investigate whether the same category 

of major players operate at all times. We find that 

basically one category of major players in this 

industry (pink nodes) operate during the first peak 

of centralization, shown in Fig. 4 while a second 

category, including more major players (blue 

nodes) becomes very active from period 4 to period 

5, explaining away the second centralization peak, 

as well as the decrease in the centralization index 

observed during this second peak (Fig. 4). 
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Fig 5. Central players’ localization (Top) and networking activities (bottom) – Network 2. The top figure shows 

the number of major players in the different states (USA). Two categories of hubs are active (blue circles for 

category 1, red circles for category 2). The bottom figure highlights the activity in the latest 2 periods (periods 4 

and 5) of more major players (within blue circle). This change is due to the sudden increase in transacting 

activity of the ‘category 2’ players displayed in the top figure. 
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Fig. 6. Dynamics of the transacting activity of major players from period 1 to 5 – Network 2. Pink rectangles 

represent category 1 players and blue rectangles category 2. 

When we compare the images in Fig. 5 (Bottom) to 

that in Fig. 5 (Top), we see the relevance of 

thinking of firms as interconnected organizations. 

The top figure gives the impression that a few 

isolated clusters of key firms operate in the US. In 

fact all major players in this industry are interacting 

between themselves, independent of their location, 

and they time their activity. 

To verify if these major players not only interact 

between themselves but also operate globally, we 

measured the community degree index. 

Fig.7 shows the results for community centrality. 

They highlight that while community centrality is 

correlated with degree (R
2
 = 0,75), the two are not 

perfectly correlated. The effect is stronger for major 

players: they clearly transcend borders (lack of 

correlation Dc/community centrality for hubs). We 

find the same results whether we look at static or 

dynamic data. Therefore hubs control the network 

at all times even when their number increases and 

another category of actors surpasses the previous 

one. 
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Fig. 7. Community Centrality  - Network 2 

 

Using degree assortativity, we find that major 

players mix not only with other major players but 

also with less connected, smaller, organizations. 

The network is indeed non-assortative for the whole 

period (r = - 0.008) and falls under the slightly 

assortative mixing if we look at discrete time 

periods (r values ranging from 0,006 to 0,04). The 

non-assortative nature of the network establishes 

that major players interact among themselves but 

also with peripheral players. 

A more detailed analysis (data not shown) reveals 

that hubs tend to interact repeatedly between  

themselves while their deals with peripheral players 

are rarely repeated even though hubs interact with 

many different small players at all times. These 

small players allow hubs to have rapid expansion 

strategies when needed or to cope with uncertainty 

and crisis situations such as the subprime crisis. 

3. Discussion  

What have we learnt from these data?  

For network 1, we’ve demonstrated that the 

influence of central players, strong at first, 

weakened rapidly through time and most 

importantly, that their influence is global in period 

1 and only local in the last period examined. Not 

shown was that central players in period 1 were 

high tech players with radical innovations while as 

hubs were mostly among the top 10 global 

pharmaceutical companies in the last period. We’ve 

also shown that the relations were mostly 

asymmetrical, i.e. hubs interacted essentially with 

peripheral players. Hubs did not interact among 

themselves, except at the very end. 

For network 2, we showed again that the power 

structure varied, but with 2 distinct phases and 

peaks. Using the k-core decomposition method 

linked to dynamic visualization techniques, we 

quickly demonstrated that one category of major 

firms in the equity industry dominated the first 

phase. The 2nd phase is explained by the sudden 

arrival of a new category of big players in this 

industry. This time, major players interacted 

heavily between themselves and we could measure 

the differential co-involvement of the different hubs 
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through time. Big firms in this industry also interact 

with smaller, less active firms. These peripheral 

firms are always dependent upon hubs and hubs 

clearly have a global influence for all periods of 

times. 

4. Conclusion 

We want to stress the importance of considering the 

links between organizations or agents in CI. 

Economic and financial systems are built on 

interdependencies. Understanding their dynamics is 

crucial as these networked systems change rapidly. 

Though we’ve only used a very small set of 

metrics, we’ve proven that inter-organizational 

networks are very different and evolve differently. 

None of the metrics used here give a sense of 

‘universality’ or of common mechanisms regarding 

the growth and dynamics of complex networks. 

The major role of big firms in both fields does not 

come as a surprise. We’ve demonstrated that hubs 

operated differently between networks, that 

different categories of hubs intervened, that hubs 

interact tightly or not at all among themselves, and 

that the power structure of a network can collapse 

(in this case, -in Network 1-, when it is led by 

highly innovative firms). We’ve also shown that 

major companies in both industries have different 

strategies and timing, and can operate globally or 

locally. 

This was done using a very small set of network 

metrics and a visualization software that can render 

networks dynamic, another key goal for CI 

analysts. Ongoing work consists of matching 

visualization techniques with statistical physics, 

accessible directly on graphs. This will give more 

input on systems and their agents. 

“More is different”. We highlight the importance of 

progressing in the field of statistical physics to help 

CI practitioners address differences between 

economic and financial systems, as system 

dynamics evolve rapidly due to endogenous as well 

as exogenous events (bubbles and busts, radical 

change, globalization, new rules, etc.). 

We also call attention to the importance in CI of 

understanding the interplay between micro- and 

macro- behavior (i.e. the influence the strategy of 

individual firms may have on the macro systems 

they are embedded in and the constraint/influence 

that these economic or financial systems in turn 

may exert on individual organizations).  

The ultimate goal is to give managers guidelines to 

help them understand the different environments in 

which they operate and position their firms. Some 

firms can also change/govern economic/financial 

environments or alter their power structure. 
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