Competitive and technology intelligence to reveal the most influential authors and inter-institutional collaborations on additive manufacturing for hand orthoses
DOI:
https://doi.org/10.37380/jisib.v8i3.364Keywords:
3D printing, additive manufacturing, betweenness centrality, bibliographic coupling, competitive intelligence, hand orthoses, network map analysis, scientometricsAbstract
Additive manufacturing (AM) is revolutionizing the health industry, where it
provides innovative solutions for the production of personalized devices, such as hand orthoses.
However, the scientific research dynamics in this topic have not yet been investigated. This
study aims to fill this gap through the application of a competitive and technology intelligence
(CTI) methodology enhanced by a scientometric and network map analysis. Major advances in
the fabrication of hand orthoses using AM, the presence of collaborations, and the most
influential authors were determined. Specifically, network map analysis, bibliographic
occurrence and bibliographic coupling were conducted on documents retrieved from Scopus and
the Web of Science (WoS), and on patents from more than 104 authorities. Results showed only
nine published patent families and 34 research articles on this topic from 2006 to 2016. Ten
papers concern static orthoses, while 24 deal with dynamic orthoses and exoskeletons. The
indegree and outdegree parameters and the betweenness centrality of these documents enabled
us to determine the most cited authors and instances of collaboration (papers co-authored
between institutions). Dr. Paterson A. M. J. was the most influential author, with four
publications with the highest betweenness centrality in the network (189), which accounted for
the most cited document with five citations. The institution with the most publications was
Loughborough University, with four papers, and the collaboration between affiliations was rare.
These documents review important aspects of manufacturing orthoses using AM, and
additionally pay particular attention to the importance of personalised orthoses where AM
contributes. Notably, these papers focused primarily on studies for the development of a
methodology for the fabrication of hand orthoses using AM, but they do not present any
application. This research provides insights to better understand the dynamics of research and
development in the orthopaedics domain, specifically for hand orthoses.
References
Archibugi, D. and Pianta, M. (1996). Measuring
Technological Change through Patents and
Innovation Surveys. Technovation, 16(9), 451-
(96)00031-4
Bakhtin, P. and Saritas, O. (2016). Tech Mining
for Emerging STI Trends Through Dynamic
Term Clustering and Semantic Analysis: The
Case of Photonics. In Daim, T., Chiavetta, D.,
Porter, A. and Saritas, O. (eds). Anticipating
Future Innovation Pathways Through Large
Data Analysis. New York: Springer, 341-360.
http://doi.org/10.1007/978-3-319-39056-7_18
Banks, J. (2013). Adding Value in Additive
Manufacturing. IEEE Pulse, 4(6), 22–26.
http://doi.org/10.1109/mpul.2013.2279617
Baronio, G., Harran, S. and Signoroni, A. (2016).
A Critical Analysis of a Hand Orthosis
Reverse Engineering and 3D Printing Process.
Applied Bionics and Biomechanics,
(July).
Basiliere, P., and Shanler, M. (2015). Hype Cycle
for 3D Printing, 2015(July) , 1-26.
Bastian, M., Heymann, S. and Jacomy, M. (2009).
Gephi: An Open Source Software for Exploring
and Manipulating Networks. Third
International AAAI Conference on Weblogs
and Social Media, 361-362.
http://doi.org/10.1136/qshc.2004.010033
Bataller, A., Cabrera, J. A., Clavijo, M. and
Castillo, J. J. (2016). Evolutionary synthesis of
mechanisms applied to the design of an
exoskeleton for finger rehabilitation.
Mechanism and Machine Theory, 105, 31-433.
http://doi.org/10.1016/j.mechmachtheory.2016
.06.022
Bianchi, M., and Buonamici, F. (2016). Design
and Optimization of a Flexion/Extension
Mechanism for a Hand Exoskeleton System.
In Asme 2016. North Carolina.
http://doi.org/10.1115/DETC2016-59466
Biscaro, C., and Giupponi, C. (2014). Coauthorship
and bibliographic coupling
network effects on citations. PLoS ONE, 9(6).
http://doi.org/10.1371/journal.pone.0099502
Bonino, D., Ciaramella, A. and Corno, F. (2010).
Review of the state-of-the-art in patent
information and forthcoming evolutions in
intelligent patent informatics. World Patent
Information, 32(1), 30-38.
http://doi.org/10.1016/j.wpi.2009.05.008
Bornmann, L. and Leydesdorff, L. (2014).
Scientometrics in a changing research
Landscape. EMBO Reports, 15(12), 1-6.
Bouzit, M., Burdea, G., Popescu, G. andBoian, R.
(2002). The Rutgers Master II - New design
force-feedback glove. IEEE/ASME
Transactions on Mechatronics, 7(2), 256-263.
http://doi.org/10.1109/TMECH.2002.1011262
Brandes, U. (2001). A faster algorithm for
betweenness centrality*. The Journal of
Mathematical Sociology, 25(2), 163-177. doi:
1080/0022250X.2001.9990249
Cassell, E., Ashby, K., Gunatilaka, A. and
Clapperton, A. (2005). Do wrist guards have
the potential to protect against wrist injuries
in bicycling, micro scooter riding, and monkey
bar play? INJURY PREVENTION, 11(4), 200-
Cincotti, C. C., O’Donnell, S., Zapata, G. E.,
Rabolli, C. M. and BuSha, B. F. (2015).
Strength amplifying hand exoskeleton. 2015
st Annual Northeast Biomedical
Engineering Conference, NEBEC 2015.
http://doi.org/10.1109/NEBEC.2015.7117082
Colditz, J. (1996). Principles of splinting and
splint prescription. In Peimer, C. A. (ed).
Surgery of the Hand and Upper Extremity.
New York: McGraw-Hill, 2389-2410.
Colditz, J. C. (2002). Plaster of Paris: The
forgotten hand splinting material. Journal of
Hand Therapy, 15(2), 144-157.
http://doi.org/http://dx.doi.org/10.1053/hanthe
.2002.v15.015014
Cook, D., Gervasi, V., Rizza, R., Kamara, S. and
Liu, X.C. (2010). Additive fabrication of
custom pedorthoses for clubfoot correction.
Rapid Prototyping Journal, 16(3), 189-193.
http://doi.org/10.1108/13552541011034852
Coppard, B. M., and Lohman, H. (2015).
Introduction to orthotics : a clinical reasoning
& problem-solving approach. Maryland
Heights, MO: Mosby.
Da Fonsêca, G. F. G., Lopes, J. A. L., da Silva, J.
R. C., de Almeida, L. C., and de Andrade, M.
M. (2016). BR 102014029649 A2:
Manufacturing process articulated prostheses
from a combination of rigid and flexible
material in one piece. Brazil.
Davey, S. M., Brennan, M., Meenan, B. J. and
McAdam, R. (2011). Innovation in the medical
device sector: an open business model
approach for high-tech small firms.
Technology Analysis & Strategic Management,
(8), 807-824.
http://doi.org/10.1080/09537325.2011.604152
Deniz, K. (2016). WO 2016071773 A2: Methods
for Integrating Sensors and Effectors in
Custom Three-Dimensional Orthosis. Turkey.
Deshpande, A. (2015). WO 2015095459 A1:
Robotic finger exoskeleton. US.
Dormehl, L. (2018). 14 major milestones along the
brief history of 3D printing. Elmira, NY:
WENY News
Elsevier, B.V. (2016). Scopus: Content Coverage
Guide. Retrieved from
https://www.elsevier.com/__data/assets/pdf_fi
le/0007/69451/scopus_content_coverage_guide
Espalin, D., Arcaute, K., Rodriguez, D., Medina,
F., Posner, M. and Wicker, R. (2010). Fused
deposition modeling of patient-specific
polymethylmethacrylate implants. Rapid
Prototyping Journal, 16(3), 164-173.
http://doi.org/10.1108/13552541011034825
Fabry, B., Ernst, H., Langholz, J. and Köster, M.
(2006). Patent portfolio analysis as a useful
tool for identifying R&D and business
opportunities–an empirical application in the
nutrition and health industry. World Patent
Information, 28(3), 215-225.
http://doi.org/10.1016/j.wpi.2005.10.004
Faustini, M. C., Neptune, R. R., Crawford, R. H.
and Stanhope, S. J. (2008). Manufacture of
passive dynamic ankle-foot orthoses using
selective laser sintering. IEEE Transactions
on Biomedical Engineering, 55(2), 784-790.
http://doi.org/10.1109/TBME.2007.912638
Fess, E. E. (2002). A History of splinting: To
understand the present, view the past.
Journal of Hand Therapy, 15(2), 97-132.
http://doi.org/10.1053/hanthe.2002.v15.01500
Fess, E. E., & Fess, E. E. (2005). Hand and upper
extremity splinting : principles & methods.
Maryland Heights, MO: Mosby.
Fess, E., and McCollum, M. (1998). The influence
of splinting on healing tissues. Journal of
Hand Therapy: Official Journal of the
American Society of Hand Therapists, 11(2),
-147. http://doi.org/10.1016/S0894-
(98)80012-4
García-García, L. A. and Rodríguez-Salvador, M.
(2018). Additive manufacturing knowledge
incursion on orthopaedic devices: The case of
hand orthoses. In The 3rd International
Conference on Progress in Additive
Manufacturing. 571-576).
Gmür, M. (2003). Co-citation analysis and the
search for invisible colleges: A methodological
evaluation. Scientometrics, 57(1), 27-57.
http://doi.org/10.1023/A:1023619503005
Goodman, S. L., Kim, Kyujung andSchroeder, J.
(2007). WO 2007045000 A2: Personal fit
medical implants and orthopedic surgical
instruments and methods for making. United
States.
Hopkinson, N., Hague, R. and Dickens, P. (2005).
Rapid Manufacturing: an industrial
revolution for the digital age. Hoboken, NJ:
John Wiley & Sons, Ltd.
http://doi.org/10.1002/0470033991.fmatter
Imms, C., et al.. (2016). Minimising impairment:
Protocol for a multicentre randomised
controlled trial of upper limb orthoses for
children with cerebral palsy. BMC Pediatrics,
Iqbal, J., Tsagarakis, N. G. and Caldwell, D. G.
(2010). A human hand compatible optimised
exoskeleton system. 2010 IEEE International
Conference on Robotics and Biomimetics,
ROBIO 2010, 685-690.
http://doi.org/10.1109/ROBIO.2010.5723409
Iqbal, J., Tsagarakis, N. G., Fiorilla, A. E. and
Caldwell, D. G. (2010). A portable
rehabilitation device for the hand. 2010
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society,
EMBC’10, 3694-3697.
http://doi.org/10.1109/IEMBS.2010.5627448
Jacomy, M., Venturini, T., Heymann, S. and
Bastian, M. (2014). ForceAtlas2, a continuous
graph layout algorithm for handy network
visualization designed for the Gephi software.
PLoS ONE, 9(6).
http://doi.org/10.1371/journal.pone.0098679
Schouwenburg, K. L., Bersak, D., Smith, J. and
Murphy, C. N.. (2016). US 20160101571 A1:
Systems and methods for generating orthotic
device models by surface mapping and
extrusion. US.
Kim, H. and Jeong, S. (2015). Case study: Hybrid
model for the customized wrist orthosis using
D printing. Journal of Mechanical Science
and Technology, 29(12).
http://doi.org/10.1007/s12206-015-1115-9
Kuusi, O. andMeyer, M. (2007). Anticipating
technological breakthroughs: Using
bibliographic coupling to explore the
nanotubes paradigm. Scientometrics, 70(3),
–777. http://doi.org/10.1007/s11192-007-
-5
Leydesdorff, L., De Moya-Anegõn, F. and
Guerrero-Bote, V. P. (2015). Journal maps,
interactive overlays, and the measurement of
interdisciplinarity on the basis of Scopus data
(1996-2012). Journal of the Association for
Information Science and Technology, 66(5),
-1016. http://doi.org/10.1002/asi.23243
Leydesdorff, L. and Milojević, S. (2015).
Scientometrics. International Encyclopedia of
the Social & Behavioral Sciences (Second
Edition), 322–327.
http://doi.org/http://dx.doi.org/10.1016/B978-
-08-097086-8.85030-8
Low, J.-H., Ang, M. H. and Yeow, C.-H. (2015).
Customizable soft pneumatic finger actuators
for hand orthotic and prosthetic applications.
In IEEE International Conference on
Rehabilitation Robotics (Vol. 2015-Sept).
http://doi.org/10.1109/ICORR.2015.7281229
Madden, K. E. and Deshpande, A. D. (2015). On
Integration of Additive Manufacturing During
the Design and Development of a
Rehabilitation Robot: A Case Study. Journal
of Mechanical Design, 137(11), 111417.
http://doi.org/10.1115/1.4031123
Matthew Chin, H. C., Hoon, L. J. and Yeow, R. C.
H. (2016). Design and evaluation of
Rheumatoid Arthritis rehabilitative Device
(RARD) for laterally bent fingers. In
Proceedings of the IEEE RAS and EMBS
International Conference on Biomedical
Robotics and Biomechatronics. 2016(July)..
http://doi.org/10.1109/BIOROB.2016.7523732
Mavroidis, C. et al. (2011). Patient specific anklefoot
orthoses using rapid prototyping. Journal
of NeuroEngineering and Rehabilitation, 8(1),
http://doi.org/10.1186/1743-0003-8-1
McCain, K. W. (1990). Mapping Authors in
Intellectual Space: A Technical Overview.
Journal of the American Society for
Information Science, 41(6), 433-443.
Mingers, J. and Leydesdorff, L. (2015). A Review
of Theory and Practice in Scientometrics A
Review of Theory and Practice in
Scientometrics 1. European Journal of
Operational Research, (1934), 1-47.
http://doi.org/10.1016/j.ejor.2015.04.002
Oldham, P., Hall, S. and Burton, G. (2012).
Synthetic biology: Mapping the Scientific
landscape. PLoS ONE, 7(4).
http://doi.org/10.1371/journal.pone.0034368
Omarkulov, N., Telegenov, K., Zeinullin, M.,
Tursynbek, I. and Shintemirov, A. (2016).
Preliminary mechanical design of NU-Wrist:
A 3-DOF self-Aligning Wrist rehabilitation
robot. Proceedings of the IEEE RAS and
EMBS International Conference on
Biomedical Robotics and Biomechatronics.
(July), 962-967.
http://doi.org/10.1109/BIOROB.2016.7523753
Palousek, D., Rosicky, J., Koutny, D., Stoklásek,
P. and Navrat, T. (2014). Pilot study of the
wrist orthosis design process. Rapid
Prototyping Journal, 20(1).
http://doi.org/10.1108/RPJ-03-2012-0027
Paterson, A. M., Bibb, R., Campbell, R. I. and
Bingham, G. (2015). Comparing additive
manufacturing technologies for customised
wrist splints. Rapid Prototyping Journal,
(3). doi: 10.1108/RPJ-10-2013-0099
Paterson, A. M., Bibb, R. J. and Campbell, R. I.
(2012). Evaluation of a digitised splinting
approach with multiple-material functionality
using additive manufacturing technologies. In
D. Bourell (Ed.), Twenty-Third Annual
International Solid Freeform Fabrication
Symposium, 656-672.
Paterson, A. M., Donnison, E. Bibb, R. J. and Ian
Campbell, R. (2014). Computer-aided design
to support fabrication of wrist splints using 3D
printing: A feasibility study. Hand Therapy,
(4), 102-113.
http://doi.org/10.1177/1758998314544802
Paterson, A. M. J., Bibb, R. J. and Campbell, R. I.
(2010a). A review of existing anatomical data
capture methods to support the mass
customisation of wrist splints. Virtual and
Physical Prototyping, 5(4), 201-207.
http://doi.org/10.1080/17452759.2010.528183
Paterson, A. M. J., Bibb, R. J. and Campbell, R. I.
(2010b). A review of existing anatomical data
capture methods to support the mass
customisation of wrist splints. Virtual and
Physical Prototyping, 5(4).
http://doi.org/10.1080/17452759.2010.528183
Polygerinos, P., Wang, Z., Galloway, K. C., Wood,
R. J. and Walsh, C. J. (2014). Soft robotic glove
for combined assistance and at-home
rehabilitation. Robotics and Autonomous
Systems, 73, 135-143.
http://doi.org/10.1016/j.robot.2014.08.014
Porter, A. L. and Youtie, J. (2009). How
interdisciplinary is nanotechnology? Journal
of Nanoparticle Research, 11(5), 1023-1041.
http://doi.org/10.1007/s11051-009-9607-0
Reimer, S. M. F., Lueth, T. C. and D’Angelo, L. T.
(2014). Individualized arm shells towards an
ergonomic design of exoskeleton robots.
Conference Proceedings - IEEE International
Conference on Systems, Man and Cybernetics,
–Janua(January), 3958-3965.
http://doi.org/10.1109/SMC.2014.6974550
Ranky, R. and Mavroidis, C. (2014). JP
A: Customizable embedded
sensors. Japan.
Rodríguez-Salvador, M. and Tello-Bañuelos, M.
(2012). Applying patent analysis with
competitive technical intelligence: The case of
plastics. Journal of Intelligence Studies in
Business, 2(1), 51-58. Retrieved from
http://www.scopus.com/inward/record.url?eid
=2-s2.0-84905713951&partnerID=tZOtx3y1
Rodríguez-Salvador, M., Rio-Belver, R. M. and
Garechana-Anacabe, G. (2017). Scientometric
and patentometric analyses to determine the
knowledge landscape in innovative
technologies: The case of 3D bioprinting. PLoS
ONE, 12(6).
http://doi.org/10.1371/journal.pone.0180375
Rodríguez-Salvador, M., Cruz-Zamudio, P.,
Avila-Carrasco S.A., Olivares-Benítez, E. and
Arellano-Bautista, B. (2014). Strategic
Foresight: Determining Patent Trends in
Additive Manufacturing. Journal of
Intelligence, 4(3), 42-62. Retrieved from
http://scholar.google.comhttps//seojs-dev.lu.lv/index
.php/JISIB/article/view/104
Rotolo, D., Rafols, I., Hopkins, M. and
Leydesdorff, L. (2015). Strategic Intelligence
on Emerging Technologies: Scientometric
Overlay Mapping. Journal of the Association
for Information Science and Technology,
(September), 1-38.
http://doi.org/10.1002/asi.23631
Schiele, A. and Van Der Helm, F. C. T. (2006).
Kinematic design to improve ergonomics in
human machine interaction. IEEE
Transactions on Neural Systems and
Rehabilitation Engineering, 14(4), 456-469.
http://doi.org/10.1109/TNSRE.2006.881565
Schroeder, J. (2010). WO 2010120990 A1:
Personal fit medical implants and orthopedic
surgical instruments and methods for making.
United States.
Schubert, C., Van Langeveld, M. C. and Donoso,
L. A. (2014). Innovations in 3D printing: a 3D
overview from optics to organs. The British
Journal of Ophthalmology, 98(2), 159-61.
http://doi.org/10.1136/bjophthalmol-2013-
Schultz-Johnson, K. (2002). Static progressive
splinting. Journal of Hand Therapy : Official
Journal of the American Society of Hand
Therapists, 15(June), 163-178.
http://doi.org/10.1053/hanthe.2002.v15.01501
Schwartz, D. A. and Janssen, R. G. (2005). Static
progressive splint for composite flexion.
Journal of Hand Therapy, 18(4), 447-449.
http://doi.org/10.1197/j.jht.2005.07.005
Sinha, M. and Pandurangi, A. (2016). Guide to
practical patent searching and how to use
Patseer for patent search and analysis (Second
ed.).
Small, H. (1973). Co-citation in the Scientific
Literature : A New Measure of the
Relationship Between Two Documents, 265-
Tan G., Robson, N. and Soh, G. S. (2016).
Dimensional synthesis of a passive eight-bar
slider exo-limb for grasping tasks. In
International Design Engineering Technical
Conferences and Computers and Information
in Engineering Conference, Volume 5B: 40th
Mechanisms and Robotics Conference (p. 9).
North Carolina.
Tang, T., Zhang, D., Xie, T. and Zhu, X. (2013).
An exoskeleton system for hand rehabilitation
driven by shape memory alloy. In 2013 IEEE
International Conference on Robotics and
Biomimetics, ROBIO 2013.
http://doi.org/10.1109/ROBIO.2013.6739553
Thomson Reuters. (2011). Web of Science ®, 1–4.
Velho, T. and Zavaglia, C. (2011). A Contribution
to the Development of a Human-Machine
Exoskeleton Device Using Rapid Prototyping
Technology. In Proceedings of the 2011 IEEE
international Conference on Robotics and
Biomimetics.1789-1794.
Ventola, C. L. (2014). Medical Applications for 3D
Printing: Current and Projected Uses.
Pharmacy and Therapeutics, 39(10), 704-711.
Weiss, P., Heyer, L., Munte, T. F., Heldmann, M.,
Schweikard, A. and Maehle, E. (2013).
Towards a parameterizable exoskeleton for
training of hand function after stroke. IEEE
International Conference on Rehabilitation
Robotics.
http://doi.org/10.1109/ICORR.2013.6650505
White, H. D. and Griffith, B. C. (1981). Author
cocitation: A literature measure of intellectual
structure. Journal of the American Society for
Information Science, 32(3), 163-171.
http://doi.org/10.1002/asi.4630320302
Winter, S. H. and Bouzit, M. (2006). Testing and
Usability Evaluation of the MRAGES Force
Feedback Glove. In Fifth International
Workshop on Virtual Rehabilitation, IWVR
(pp. 82-87).
http://doi.org/10.1109/IWVR.2006.1707532
Worsnopp, T. T., Peshkin, M. A., Colgate, J. E.
and Kamper, D. G. (2007). An actuated finger
exoskeleton for hand rehabilitation following
stroke. 2007 IEEE 10th International
Conference on Rehabilitation Robotics,
ICORR’07, 00(c), 896-901.
http://doi.org/10.1109/ICORR.2007.4428530
Xiogjiao, X., Ning, Y. & Haolin, Z. (2014). CN
U: Novel bionic exoskeleton
artificial limb controlled by cable wires. China.
Yap, H. K., Ng, H. Y. and Yeow, C.H. (2016).
High-Force Soft Printable Pneumatics for Soft
Robotic Applications. Soft Robotics, 3(3).
http://doi.org/10.1089/soro.2016.0030
Zachariasen, J. T. and Cropper, D. E. (2015). US
A1: Use of additive
manufacturing processes in the manufacture
of custom wearable and/or implantable
medical devices. US.
Zhao, D. and Strotmann, A. (2008). Evolution of
research activities and intellectual influences
in information science 1996-2005: Introducing
author bibliographic-coupling analysis.
Journal of the American Society for
Information Science and Technology, 59(13),
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).