Competitive and technology intelligence to reveal the most influential authors and inter-institutional collaborations on additive manufacturing for hand orthoses

Authors

  • Leonardo A. Garcia-Garcia University of Sussex
  • Marisela Rodríguez Instituto Tecnológico y de Estudios Superiores de Monterrey - Campus Monterrey

DOI:

https://doi.org/10.37380/jisib.v8i3.364

Keywords:

3D printing, additive manufacturing, betweenness centrality, bibliographic coupling, competitive intelligence, hand orthoses, network map analysis, scientometrics

Abstract

Additive manufacturing (AM) is revolutionizing the health industry, where it
provides innovative solutions for the production of personalized devices, such as hand orthoses.
However, the scientific research dynamics in this topic have not yet been investigated. This
study aims to fill this gap through the application of a competitive and technology intelligence
(CTI) methodology enhanced by a scientometric and network map analysis. Major advances in
the fabrication of hand orthoses using AM, the presence of collaborations, and the most
influential authors were determined. Specifically, network map analysis, bibliographic
occurrence and bibliographic coupling were conducted on documents retrieved from Scopus and
the Web of Science (WoS), and on patents from more than 104 authorities. Results showed only
nine published patent families and 34 research articles on this topic from 2006 to 2016. Ten
papers concern static orthoses, while 24 deal with dynamic orthoses and exoskeletons. The
indegree and outdegree parameters and the betweenness centrality of these documents enabled
us to determine the most cited authors and instances of collaboration (papers co-authored
between institutions). Dr. Paterson A. M. J. was the most influential author, with four
publications with the highest betweenness centrality in the network (189), which accounted for
the most cited document with five citations. The institution with the most publications was
Loughborough University, with four papers, and the collaboration between affiliations was rare.
These documents review important aspects of manufacturing orthoses using AM, and
additionally pay particular attention to the importance of personalised orthoses where AM
contributes. Notably, these papers focused primarily on studies for the development of a
methodology for the fabrication of hand orthoses using AM, but they do not present any
application. This research provides insights to better understand the dynamics of research and
development in the orthopaedics domain, specifically for hand orthoses.

References

Archibugi, D. and Pianta, M. (1996). Measuring

Technological Change through Patents and

Innovation Surveys. Technovation, 16(9), 451-

http://doi.org/10.1016/0166-

(96)00031-4

Bakhtin, P. and Saritas, O. (2016). Tech Mining

for Emerging STI Trends Through Dynamic

Term Clustering and Semantic Analysis: The

Case of Photonics. In Daim, T., Chiavetta, D.,

Porter, A. and Saritas, O. (eds). Anticipating

Future Innovation Pathways Through Large

Data Analysis. New York: Springer, 341-360.

http://doi.org/10.1007/978-3-319-39056-7_18

Banks, J. (2013). Adding Value in Additive

Manufacturing. IEEE Pulse, 4(6), 22–26.

http://doi.org/10.1109/mpul.2013.2279617

Baronio, G., Harran, S. and Signoroni, A. (2016).

A Critical Analysis of a Hand Orthosis

Reverse Engineering and 3D Printing Process.

Applied Bionics and Biomechanics,

(July).

Basiliere, P., and Shanler, M. (2015). Hype Cycle

for 3D Printing, 2015(July) , 1-26.

Bastian, M., Heymann, S. and Jacomy, M. (2009).

Gephi: An Open Source Software for Exploring

and Manipulating Networks. Third

International AAAI Conference on Weblogs

and Social Media, 361-362.

http://doi.org/10.1136/qshc.2004.010033

Bataller, A., Cabrera, J. A., Clavijo, M. and

Castillo, J. J. (2016). Evolutionary synthesis of

mechanisms applied to the design of an

exoskeleton for finger rehabilitation.

Mechanism and Machine Theory, 105, 31-433.

http://doi.org/10.1016/j.mechmachtheory.2016

.06.022

Bianchi, M., and Buonamici, F. (2016). Design

and Optimization of a Flexion/Extension

Mechanism for a Hand Exoskeleton System.

In Asme 2016. North Carolina.

http://doi.org/10.1115/DETC2016-59466

Biscaro, C., and Giupponi, C. (2014). Coauthorship

and bibliographic coupling

network effects on citations. PLoS ONE, 9(6).

http://doi.org/10.1371/journal.pone.0099502

Bonino, D., Ciaramella, A. and Corno, F. (2010).

Review of the state-of-the-art in patent

information and forthcoming evolutions in

intelligent patent informatics. World Patent

Information, 32(1), 30-38.

http://doi.org/10.1016/j.wpi.2009.05.008

Bornmann, L. and Leydesdorff, L. (2014).

Scientometrics in a changing research

Landscape. EMBO Reports, 15(12), 1-6.

Bouzit, M., Burdea, G., Popescu, G. andBoian, R.

(2002). The Rutgers Master II - New design

force-feedback glove. IEEE/ASME

Transactions on Mechatronics, 7(2), 256-263.

http://doi.org/10.1109/TMECH.2002.1011262

Brandes, U. (2001). A faster algorithm for

betweenness centrality*. The Journal of

Mathematical Sociology, 25(2), 163-177. doi:

1080/0022250X.2001.9990249

Cassell, E., Ashby, K., Gunatilaka, A. and

Clapperton, A. (2005). Do wrist guards have

the potential to protect against wrist injuries

in bicycling, micro scooter riding, and monkey

bar play? INJURY PREVENTION, 11(4), 200-

Cincotti, C. C., O’Donnell, S., Zapata, G. E.,

Rabolli, C. M. and BuSha, B. F. (2015).

Strength amplifying hand exoskeleton. 2015

st Annual Northeast Biomedical

Engineering Conference, NEBEC 2015.

http://doi.org/10.1109/NEBEC.2015.7117082

Colditz, J. (1996). Principles of splinting and

splint prescription. In Peimer, C. A. (ed).

Surgery of the Hand and Upper Extremity.

New York: McGraw-Hill, 2389-2410.

Colditz, J. C. (2002). Plaster of Paris: The

forgotten hand splinting material. Journal of

Hand Therapy, 15(2), 144-157.

http://doi.org/http://dx.doi.org/10.1053/hanthe

.2002.v15.015014

Cook, D., Gervasi, V., Rizza, R., Kamara, S. and

Liu, X.C. (2010). Additive fabrication of

custom pedorthoses for clubfoot correction.

Rapid Prototyping Journal, 16(3), 189-193.

http://doi.org/10.1108/13552541011034852

Coppard, B. M., and Lohman, H. (2015).

Introduction to orthotics : a clinical reasoning

& problem-solving approach. Maryland

Heights, MO: Mosby.

Da Fonsêca, G. F. G., Lopes, J. A. L., da Silva, J.

R. C., de Almeida, L. C., and de Andrade, M.

M. (2016). BR 102014029649 A2:

Manufacturing process articulated prostheses

from a combination of rigid and flexible

material in one piece. Brazil.

Davey, S. M., Brennan, M., Meenan, B. J. and

McAdam, R. (2011). Innovation in the medical

device sector: an open business model

approach for high-tech small firms.

Technology Analysis & Strategic Management,

(8), 807-824.

http://doi.org/10.1080/09537325.2011.604152

Deniz, K. (2016). WO 2016071773 A2: Methods

for Integrating Sensors and Effectors in

Custom Three-Dimensional Orthosis. Turkey.

Deshpande, A. (2015). WO 2015095459 A1:

Robotic finger exoskeleton. US.

Dormehl, L. (2018). 14 major milestones along the

brief history of 3D printing. Elmira, NY:

WENY News

Elsevier, B.V. (2016). Scopus: Content Coverage

Guide. Retrieved from

https://www.elsevier.com/__data/assets/pdf_fi

le/0007/69451/scopus_content_coverage_guide

.pdf

Espalin, D., Arcaute, K., Rodriguez, D., Medina,

F., Posner, M. and Wicker, R. (2010). Fused

deposition modeling of patient-specific

polymethylmethacrylate implants. Rapid

Prototyping Journal, 16(3), 164-173.

http://doi.org/10.1108/13552541011034825

Fabry, B., Ernst, H., Langholz, J. and Köster, M.

(2006). Patent portfolio analysis as a useful

tool for identifying R&D and business

opportunities–an empirical application in the

nutrition and health industry. World Patent

Information, 28(3), 215-225.

http://doi.org/10.1016/j.wpi.2005.10.004

Faustini, M. C., Neptune, R. R., Crawford, R. H.

and Stanhope, S. J. (2008). Manufacture of

passive dynamic ankle-foot orthoses using

selective laser sintering. IEEE Transactions

on Biomedical Engineering, 55(2), 784-790.

http://doi.org/10.1109/TBME.2007.912638

Fess, E. E. (2002). A History of splinting: To

understand the present, view the past.

Journal of Hand Therapy, 15(2), 97-132.

http://doi.org/10.1053/hanthe.2002.v15.01500

Fess, E. E., & Fess, E. E. (2005). Hand and upper

extremity splinting : principles & methods.

Maryland Heights, MO: Mosby.

Fess, E., and McCollum, M. (1998). The influence

of splinting on healing tissues. Journal of

Hand Therapy: Official Journal of the

American Society of Hand Therapists, 11(2),

-147. http://doi.org/10.1016/S0894-

(98)80012-4

García-García, L. A. and Rodríguez-Salvador, M.

(2018). Additive manufacturing knowledge

incursion on orthopaedic devices: The case of

hand orthoses. In The 3rd International

Conference on Progress in Additive

Manufacturing. 571-576).

Gmür, M. (2003). Co-citation analysis and the

search for invisible colleges: A methodological

evaluation. Scientometrics, 57(1), 27-57.

http://doi.org/10.1023/A:1023619503005

Goodman, S. L., Kim, Kyujung andSchroeder, J.

(2007). WO 2007045000 A2: Personal fit

medical implants and orthopedic surgical

instruments and methods for making. United

States.

Hopkinson, N., Hague, R. and Dickens, P. (2005).

Rapid Manufacturing: an industrial

revolution for the digital age. Hoboken, NJ:

John Wiley & Sons, Ltd.

http://doi.org/10.1002/0470033991.fmatter

Imms, C., et al.. (2016). Minimising impairment:

Protocol for a multicentre randomised

controlled trial of upper limb orthoses for

children with cerebral palsy. BMC Pediatrics,

Iqbal, J., Tsagarakis, N. G. and Caldwell, D. G.

(2010). A human hand compatible optimised

exoskeleton system. 2010 IEEE International

Conference on Robotics and Biomimetics,

ROBIO 2010, 685-690.

http://doi.org/10.1109/ROBIO.2010.5723409

Iqbal, J., Tsagarakis, N. G., Fiorilla, A. E. and

Caldwell, D. G. (2010). A portable

rehabilitation device for the hand. 2010

Annual International Conference of the IEEE

Engineering in Medicine and Biology Society,

EMBC’10, 3694-3697.

http://doi.org/10.1109/IEMBS.2010.5627448

Jacomy, M., Venturini, T., Heymann, S. and

Bastian, M. (2014). ForceAtlas2, a continuous

graph layout algorithm for handy network

visualization designed for the Gephi software.

PLoS ONE, 9(6).

http://doi.org/10.1371/journal.pone.0098679

Schouwenburg, K. L., Bersak, D., Smith, J. and

Murphy, C. N.. (2016). US 20160101571 A1:

Systems and methods for generating orthotic

device models by surface mapping and

extrusion. US.

Kim, H. and Jeong, S. (2015). Case study: Hybrid

model for the customized wrist orthosis using

D printing. Journal of Mechanical Science

and Technology, 29(12).

http://doi.org/10.1007/s12206-015-1115-9

Kuusi, O. andMeyer, M. (2007). Anticipating

technological breakthroughs: Using

bibliographic coupling to explore the

nanotubes paradigm. Scientometrics, 70(3),

–777. http://doi.org/10.1007/s11192-007-

-5

Leydesdorff, L., De Moya-Anegõn, F. and

Guerrero-Bote, V. P. (2015). Journal maps,

interactive overlays, and the measurement of

interdisciplinarity on the basis of Scopus data

(1996-2012). Journal of the Association for

Information Science and Technology, 66(5),

-1016. http://doi.org/10.1002/asi.23243

Leydesdorff, L. and Milojević, S. (2015).

Scientometrics. International Encyclopedia of

the Social & Behavioral Sciences (Second

Edition), 322–327.

http://doi.org/http://dx.doi.org/10.1016/B978-

-08-097086-8.85030-8

Low, J.-H., Ang, M. H. and Yeow, C.-H. (2015).

Customizable soft pneumatic finger actuators

for hand orthotic and prosthetic applications.

In IEEE International Conference on

Rehabilitation Robotics (Vol. 2015-Sept).

http://doi.org/10.1109/ICORR.2015.7281229

Madden, K. E. and Deshpande, A. D. (2015). On

Integration of Additive Manufacturing During

the Design and Development of a

Rehabilitation Robot: A Case Study. Journal

of Mechanical Design, 137(11), 111417.

http://doi.org/10.1115/1.4031123

Matthew Chin, H. C., Hoon, L. J. and Yeow, R. C.

H. (2016). Design and evaluation of

Rheumatoid Arthritis rehabilitative Device

(RARD) for laterally bent fingers. In

Proceedings of the IEEE RAS and EMBS

International Conference on Biomedical

Robotics and Biomechatronics. 2016(July)..

http://doi.org/10.1109/BIOROB.2016.7523732

Mavroidis, C. et al. (2011). Patient specific anklefoot

orthoses using rapid prototyping. Journal

of NeuroEngineering and Rehabilitation, 8(1),

http://doi.org/10.1186/1743-0003-8-1

McCain, K. W. (1990). Mapping Authors in

Intellectual Space: A Technical Overview.

Journal of the American Society for

Information Science, 41(6), 433-443.

Mingers, J. and Leydesdorff, L. (2015). A Review

of Theory and Practice in Scientometrics A

Review of Theory and Practice in

Scientometrics 1. European Journal of

Operational Research, (1934), 1-47.

http://doi.org/10.1016/j.ejor.2015.04.002

Oldham, P., Hall, S. and Burton, G. (2012).

Synthetic biology: Mapping the Scientific

landscape. PLoS ONE, 7(4).

http://doi.org/10.1371/journal.pone.0034368

Omarkulov, N., Telegenov, K., Zeinullin, M.,

Tursynbek, I. and Shintemirov, A. (2016).

Preliminary mechanical design of NU-Wrist:

A 3-DOF self-Aligning Wrist rehabilitation

robot. Proceedings of the IEEE RAS and

EMBS International Conference on

Biomedical Robotics and Biomechatronics.

(July), 962-967.

http://doi.org/10.1109/BIOROB.2016.7523753

Palousek, D., Rosicky, J., Koutny, D., Stoklásek,

P. and Navrat, T. (2014). Pilot study of the

wrist orthosis design process. Rapid

Prototyping Journal, 20(1).

http://doi.org/10.1108/RPJ-03-2012-0027

Paterson, A. M., Bibb, R., Campbell, R. I. and

Bingham, G. (2015). Comparing additive

manufacturing technologies for customised

wrist splints. Rapid Prototyping Journal,

(3). doi: 10.1108/RPJ-10-2013-0099

Paterson, A. M., Bibb, R. J. and Campbell, R. I.

(2012). Evaluation of a digitised splinting

approach with multiple-material functionality

using additive manufacturing technologies. In

D. Bourell (Ed.), Twenty-Third Annual

International Solid Freeform Fabrication

Symposium, 656-672.

Paterson, A. M., Donnison, E. Bibb, R. J. and Ian

Campbell, R. (2014). Computer-aided design

to support fabrication of wrist splints using 3D

printing: A feasibility study. Hand Therapy,

(4), 102-113.

http://doi.org/10.1177/1758998314544802

Paterson, A. M. J., Bibb, R. J. and Campbell, R. I.

(2010a). A review of existing anatomical data

capture methods to support the mass

customisation of wrist splints. Virtual and

Physical Prototyping, 5(4), 201-207.

http://doi.org/10.1080/17452759.2010.528183

Paterson, A. M. J., Bibb, R. J. and Campbell, R. I.

(2010b). A review of existing anatomical data

capture methods to support the mass

customisation of wrist splints. Virtual and

Physical Prototyping, 5(4).

http://doi.org/10.1080/17452759.2010.528183

Polygerinos, P., Wang, Z., Galloway, K. C., Wood,

R. J. and Walsh, C. J. (2014). Soft robotic glove

for combined assistance and at-home

rehabilitation. Robotics and Autonomous

Systems, 73, 135-143.

http://doi.org/10.1016/j.robot.2014.08.014

Porter, A. L. and Youtie, J. (2009). How

interdisciplinary is nanotechnology? Journal

of Nanoparticle Research, 11(5), 1023-1041.

http://doi.org/10.1007/s11051-009-9607-0

Reimer, S. M. F., Lueth, T. C. and D’Angelo, L. T.

(2014). Individualized arm shells towards an

ergonomic design of exoskeleton robots.

Conference Proceedings - IEEE International

Conference on Systems, Man and Cybernetics,

–Janua(January), 3958-3965.

http://doi.org/10.1109/SMC.2014.6974550

Ranky, R. and Mavroidis, C. (2014). JP

A: Customizable embedded

sensors. Japan.

Rodríguez-Salvador, M. and Tello-Bañuelos, M.

(2012). Applying patent analysis with

competitive technical intelligence: The case of

plastics. Journal of Intelligence Studies in

Business, 2(1), 51-58. Retrieved from

http://www.scopus.com/inward/record.url?eid

=2-s2.0-84905713951&partnerID=tZOtx3y1

Rodríguez-Salvador, M., Rio-Belver, R. M. and

Garechana-Anacabe, G. (2017). Scientometric

and patentometric analyses to determine the

knowledge landscape in innovative

technologies: The case of 3D bioprinting. PLoS

ONE, 12(6).

http://doi.org/10.1371/journal.pone.0180375

Rodríguez-Salvador, M., Cruz-Zamudio, P.,

Avila-Carrasco S.A., Olivares-Benítez, E. and

Arellano-Bautista, B. (2014). Strategic

Foresight: Determining Patent Trends in

Additive Manufacturing. Journal of

Intelligence, 4(3), 42-62. Retrieved from

http://scholar.google.comhttps//seojs-dev.lu.lv/index

.php/JISIB/article/view/104

Rotolo, D., Rafols, I., Hopkins, M. and

Leydesdorff, L. (2015). Strategic Intelligence

on Emerging Technologies: Scientometric

Overlay Mapping. Journal of the Association

for Information Science and Technology,

(September), 1-38.

http://doi.org/10.1002/asi.23631

Schiele, A. and Van Der Helm, F. C. T. (2006).

Kinematic design to improve ergonomics in

human machine interaction. IEEE

Transactions on Neural Systems and

Rehabilitation Engineering, 14(4), 456-469.

http://doi.org/10.1109/TNSRE.2006.881565

Schroeder, J. (2010). WO 2010120990 A1:

Personal fit medical implants and orthopedic

surgical instruments and methods for making.

United States.

Schubert, C., Van Langeveld, M. C. and Donoso,

L. A. (2014). Innovations in 3D printing: a 3D

overview from optics to organs. The British

Journal of Ophthalmology, 98(2), 159-61.

http://doi.org/10.1136/bjophthalmol-2013-

Schultz-Johnson, K. (2002). Static progressive

splinting. Journal of Hand Therapy : Official

Journal of the American Society of Hand

Therapists, 15(June), 163-178.

http://doi.org/10.1053/hanthe.2002.v15.01501

Schwartz, D. A. and Janssen, R. G. (2005). Static

progressive splint for composite flexion.

Journal of Hand Therapy, 18(4), 447-449.

http://doi.org/10.1197/j.jht.2005.07.005

Sinha, M. and Pandurangi, A. (2016). Guide to

practical patent searching and how to use

Patseer for patent search and analysis (Second

ed.).

Small, H. (1973). Co-citation in the Scientific

Literature : A New Measure of the

Relationship Between Two Documents, 265-

Tan G., Robson, N. and Soh, G. S. (2016).

Dimensional synthesis of a passive eight-bar

slider exo-limb for grasping tasks. In

International Design Engineering Technical

Conferences and Computers and Information

in Engineering Conference, Volume 5B: 40th

Mechanisms and Robotics Conference (p. 9).

North Carolina.

Tang, T., Zhang, D., Xie, T. and Zhu, X. (2013).

An exoskeleton system for hand rehabilitation

driven by shape memory alloy. In 2013 IEEE

International Conference on Robotics and

Biomimetics, ROBIO 2013.

http://doi.org/10.1109/ROBIO.2013.6739553

Thomson Reuters. (2011). Web of Science ®, 1–4.

http://doi.org/10.1023/B

Velho, T. and Zavaglia, C. (2011). A Contribution

to the Development of a Human-Machine

Exoskeleton Device Using Rapid Prototyping

Technology. In Proceedings of the 2011 IEEE

international Conference on Robotics and

Biomimetics.1789-1794.

Ventola, C. L. (2014). Medical Applications for 3D

Printing: Current and Projected Uses.

Pharmacy and Therapeutics, 39(10), 704-711.

Weiss, P., Heyer, L., Munte, T. F., Heldmann, M.,

Schweikard, A. and Maehle, E. (2013).

Towards a parameterizable exoskeleton for

training of hand function after stroke. IEEE

International Conference on Rehabilitation

Robotics.

http://doi.org/10.1109/ICORR.2013.6650505

White, H. D. and Griffith, B. C. (1981). Author

cocitation: A literature measure of intellectual

structure. Journal of the American Society for

Information Science, 32(3), 163-171.

http://doi.org/10.1002/asi.4630320302

Winter, S. H. and Bouzit, M. (2006). Testing and

Usability Evaluation of the MRAGES Force

Feedback Glove. In Fifth International

Workshop on Virtual Rehabilitation, IWVR

(pp. 82-87).

http://doi.org/10.1109/IWVR.2006.1707532

Worsnopp, T. T., Peshkin, M. A., Colgate, J. E.

and Kamper, D. G. (2007). An actuated finger

exoskeleton for hand rehabilitation following

stroke. 2007 IEEE 10th International

Conference on Rehabilitation Robotics,

ICORR’07, 00(c), 896-901.

http://doi.org/10.1109/ICORR.2007.4428530

Xiogjiao, X., Ning, Y. & Haolin, Z. (2014). CN

U: Novel bionic exoskeleton

artificial limb controlled by cable wires. China.

Yap, H. K., Ng, H. Y. and Yeow, C.H. (2016).

High-Force Soft Printable Pneumatics for Soft

Robotic Applications. Soft Robotics, 3(3).

http://doi.org/10.1089/soro.2016.0030

Zachariasen, J. T. and Cropper, D. E. (2015). US

A1: Use of additive

manufacturing processes in the manufacture

of custom wearable and/or implantable

medical devices. US.

Zhao, D. and Strotmann, A. (2008). Evolution of

research activities and intellectual influences

in information science 1996-2005: Introducing

author bibliographic-coupling analysis.

Journal of the American Society for

Information Science and Technology, 59(13),

-2086. http://doi.org/10.1002/asi.20910

Downloads

Published

2019-01-14

Issue

Section

Article