Interpreting, analyzing and distributing information: A big data framework for competitive intelligence

Authors

  • Eduardo Luis Casarotto
  • Guilherme Cunha Malafaia
  • Marta Pagán Martínez
  • Erlaine Binotto

DOI:

https://doi.org/10.37380/jisib.v1i1.691

Keywords:

Big data, competitive intelligence, technological innovation

Abstract

This paper aimed to develop a data-based technological innovation framework
focused on the competitive intelligence process. Technological innovations increasingly
transform the behavior of societies, affecting all sectors. Solutions such as cloud computing, the
Internet of Things, and artificial intelligence provide and benefit from a vast generation of data:
large data sets called Big Data. The use of new technologies in all sectors increases in the face
of such innovation and technological mechanisms of management. We advocated that the use of
Big Data and the competitive intelligence process could help generate or maintain a competitive
advantage for organizations. We based the proposition of our framework on the concepts of Big
Data and competitive intelligence. Our proposal is a theoretical framework for use in the
collection, treatment, and distribution of information directed to strategic decision-makers. Its
systematized architecture allows the integration of processes that generate information for
decision making.

References

ABRAIC. Associação Brasileira dos Analistas de

Inteligência Competitiva. (2012). Perguntas

frequentes: O que é inteligência competitiva?

Brasília. Online Available at:

http://www.abraic.org.br/inf.php?idAtual=1&i

dTela=25. Accessed March 10, 2018.

Adrian, C., Abdullah, R., Atan, R., & Jusoh, Y. Y.

(2016). Towards developing strategic

assessment model for big data

implementation: a systematic literature

review. Int. J. Adv. Soft Compu. Appl, 8(3).

Online Available at:

https://www.researchgate.net/profile/Cecilia_

Adrian/publication/312625754_Towards_Dev

eloping_Strategic_Assessment_Model_for_Big

_Data_Implementation_A_Systematic_Litera

ture_Review/links/588709a9aca272b7b44ced9

b/Towards-Developing-Strategic-Assessment-

Mod el-for-Big-Data-Implementation-ASystematic-

Literature-Review.pdf. Accessed

July 10, 2017.

Ayankoya, K., Calitz, A. P., & Greyling, J. H.

(2016). Real-time grain commodities price

predictions in South Africa: a big data and

neural networks approach. Agrekon, 55(4),

-508. Online Available at:

https://www.tandfonline.com/doi/abs/10.1080/

2016.1243060. Accessed July 10,

Bernhardt, D. C. (1994). ‘I want it fast, factual,

actionable’- tailoring competitive intelligence

to executives' needs. Long range

planning, 27(1), 12-24. Online Available at:

https://www.sciencedirect.com/science/article/

abs/pii/0024630194900035. Accessed March

, 2018.

Bose, R. (2008). Competitive intelligence process

and tools for intelligence analysis. Industrial

management & data systems, 108(4), 510-528.

Online Available at:

https://www.emeraldinsight.com/doi/abs/10.1

/02635570810868362. Accessed January

, 2018.

Breakspear, A. (2013). A new definition of

intelligence. Intelligence and National

Security, 28(5), 678-693. Online Available at:

https://www.tandfonline.com/doi/abs/10.1080/

2012.699285. Accessed April 27,

Brummer, H. L., Badenhorst, J. A., & Neuland,

E. W. (2006). Competitive analysis and

strategic decision-making in global mining

firms. Journal of Global Business &

Technology 2(2). Online Available at:

https://search.proquest.com/openview/b8cb13

e7d11bd66c3978805bc6a1902/1?cbl=38740&

pq-origsite=gscholar. Accessed April 17, 2018.

Bruneau, J-M & Frion, P. (2015). Revisiting Sun

Tzu in the information overload age for

applied intelligence education: Stop

answering, find good questions. Journal of

Intelligence Studies in Business, 5(1). Online

Available at:

https://194.47.18.162/index.php/JISIB/article/

viewFile/113/112. Accessed May 28, 2018.

Calof, J.; Richards, G. & Santilli, P. (2017).

Integration of business intelligence with

corporate strategic management. Journal of

Intelligence Studies in Business, 7(3). Online

Available at:

https://seojs-dev.lu.lv/index.php/JISIB/article/view/

Accessed October 18, 2018.

Calof, J. L., & Dishman, P. (2002). The

intelligence process: front-end to strategic

planning. Telfer Working Papers, Ottawa.

Carbonell, I. (2016). The ethics of big data in big

agriculture. Internet Policy Review, 5(1).

Online Available at:

https://papers.ssrn.com/sol3/papers.cfm?abstr

act_id=2772247. Accessed May 22, 2018. DOI:

14763/2016.1.405.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A

survey. Mobile networks and applications,

(2), 171-209. Online Available at:

https://link.springer.com/content/pdf/10.1007

%2Fs11036-013-0489-0.pdf. Accessed August

, 2017.

De Pelsmacker, P., Muller, M., Viviers, W.,

Saayman, A., Cuyvers, L., & Jegers, M. (2005).

Competitive intelligence practices of South

African and Belgian exporters. Marketing

intelligence & planning, 23(6), 606-620.

Online Available at:

https://www.emeraldinsight.com/doi/abs/10.1

/02634500510624156. Accessed March 27,

Erickson, G. S. & Rothberg, H. N. (2016).

Intangible dynamics in financial

services. Journal of Service Theory and

Practice, 26(5), 642-656. Online Available at:

https://www.emeraldinsight.com/doi/abs/10.1

/JSTP-04-2015-0093. Accessed May 28,

Erickson, G. S. & Rothberg, H. N. (2013). A

strategic approach to knowledge development

and protection. The Service Industries

Journal, 33(13-14), 1402-1416. Online

Available at:

https://www.tandfonline.com/doi/abs/10.1080/

2013.815740. Accessed May 28,

Fleisher, C. S. (2004). Competitive intelligence

education: competencies, sources, and

trends. Information Management

Journal, 38(2), 56-62. Online Available at:

https://search.proquest.com/docview/2277501

?accountid=137255. Accessed April 17,

Freeman, C., Clark, J., & Soete, L.

(1982). Unemployment and technical

innovation: a study of long waves and

economic development. Burns & Oates.

Ghasemaghaei, M., & Calic, G. (2020). Assessing

the impact of big data on firm innovation

performance: Big data is not always better

data. Journal of Business Research, 108, 147-

Online Available at:

http://www.sciencedirect.com/science/article/p

ii/S0148296319305740. Accessed December 2,

Gantz, J., & Reinsel, D. (2011). Extracting value

from chaos. IDC iview, 1142(2011), 1-12.

Online Available at:

http://www.emc.com.az/collateral/analystreports/

idc-extracting-value-from-chaosar.

pdf. Accessed April 16, 2018.

Gilad, B. (2016). Developing competitive

intelligence capability. Association of

Accountants and Financial Professionals in

Business. Online Available at:

https://www.imanet.org/insights-andtrends/

technology-enablement/developingcompetitive-

intelligence-capability?ssopc=1.

Accessed March 29, 2018.

Gomes, E., & Braga, F. (2017). Inteligência

Competitiva em Tempos de Big Data:

Analisando informações e identificando

tendências em tempo real. Alta Books Editora.

Günther, W. A., Mehrizi, M. H. R., Huysman, M.,

& Feldberg, F. (2017). Debating big data: A

literature review on realizing value from big

data. The Journal of Strategic Information

Systems, 26(3), 191-209.Online Available at:

https://www.sciencedirect.com/science/article/

pii/S0963868717302615. Accessed August 28,

Gupta, M., & George, J. F. (2016). Toward the

development of a big data analytics

capability. Information & Management, 53(8),

-1064. Online Available at:

https://www.sciencedirect.com/science/article/

abs/pii/S0378720616300787. Accessed May

, 2017.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B.,

Mokhtar, S., Gani, A., & Khan, S. U. (2015).

The rise of “big data” on cloud computing:

Review and open research issues. Information

systems, 47, 98-115. Online Available at:

https://www.sciencedirect.com/science/article/

abs/pii/S0306437914001288. Accessed August

, 2017.

Herring, J. P. (1999). Key intelligence topics: a

process to identify and define intelligence

needs. Competitive Intelligence Review:

Published in Cooperation with the Society of

Competitive Intelligence Professionals, 10(2),

-14. Online Available at:

https://onlinelibrary.wiley.com/doi/abs/10.100

/(SICI)1520-6386(199932)10:2%3C4::AIDCIR3%

E3.0.CO;2-C. Accessed March 23,

Hughes, S.F. (2017) A new model for identifying

emerging technologies. Journal of Intelligence

Studies in Business. 7 (1) 79-86. Online

Available at:

https://seojs-dev.lu.lv/index.php/JISIB/article/view/

. Accessed April 15, 2019.

Jensen, M. (2013, June). Challenges of privacy

protection in big data analytics. In 2013 IEEE

International Congress on Big Data (pp. 235-

. IEEE. Online Available at:

https://ieeexplore.ieee.org/abstract/document/

Accessed October 10, 2018.

Jimenez-Marquez, J. L., Gonzalez-Carrasco, I.,

Lopez-Cuadrado, J. L., & Ruiz-Mezcua, B.

(2019). Towards a big data framework for

analyzing social media content. International

Journal of Information Management, 44, 1-12.

Accessed May 5, 2020.

Kabir, N., & Carayannis, E. (2013). Big Data,

Tacit Knowledge and Organizational

Competitiveness. Journal of Intelligence

Studies in Business, 3, 54-62. Online at:

https://194.47.18.162/index.php/JISIB/article/

viewFile/76/pdf_4. Accessed July 17, 2017.

Keiser, B. E. (1987). Practical competitor

intelligence. Planning Review, 15(5), 14-45.

Online Available at:

https://www.emeraldinsight.com/doi/abs/10.1

/eb054200. Accessed April 2, 2018.

Köseoglu, M. A., Ross, G., & Okumus, F. (2016).

Competitive intelligence practices in

hotels. International Journal of Hospitality

Management, 53, 161-172. Online at:

https://www.sciencedirect.com/science/article/

pii/S0278431915001723. Accessed March 26,

Li, M., Zhang, Z., & Hu, Z. (2017). Big data-driven

technology innovation: Concept and key

problems. In Wuhan International Conference

on e-Business. Association for Information

Systems. Online Available at:

https://aisel.aisnet.org/cgi/viewcontent.cgi?art

icle=1052&context=whiceb2017. Accessed

January 18, 2018.

Manyika, J., Chui, M., Brown, B., Bughin, J.,

Dobbs, R., Roxburgh, C., & Hung Byers, A.

(2011). Big data: The next frontier for

innovation, competition, and productivity.

McKinsey Global Institute. Online at:

https://www.mckinsey.com/~/media/mckinsey/

business%20functions/mckinsey%20digital/ou

r%20insights/big%20data%20the%20next%20

frontier%20for%20innovation/mgi_big_data_f

ull_report.ashx. Accessed April 16, 2018.

Mohammadalian, S., Nazemi, E., & Tarokh, M. J.

(2013). Propose a Conceptual Model of

Adaptive Competitive Intelligence

(ACI). International Journal of Business

Intelligence Research (IJBIR), 4(4), 22-32.

Online Available at:

https://www.researchgate.net/publication/273

_Propose_a_Conceptual_Model_of_Ad

aptive_Competitive_Intelligence_ACI.

Accessed January 12, 2018.

Nasri, W. (2011). Competitive intelligence in

Tunisian companies. Journal of Enterprise

Information Management, 24(1), 53-67.

Online Available at:

https://www.emeraldinsight.com/doi/full/10.1

/17410391111097429. Accessed April 17,

Nudurupati, S. S., Tebboune, S., & Hardman, J.

(2016). Contemporary performance

measurement and management (PMM) in

digital economies. Production Planning &

Control, 27(3), 226-235. Online Available at:

https://www.tandfonline.com/doi/abs/10.1080/

2015.1092611. Accessed June 19,

OECD. Development (Paris). Organisation de

coopération et de développement économiques

(Paris), Statistical Office of the European

Communities, Development. Development

Centre, & Society for International

Development. (2005). Oslo manual:

Guidelines for collecting and interpreting

innovation data (No. 4). Org. for Economic

Cooperation & Development. Online at:

http://197.249.65.74:8080/biblioteca/bitstream

/123456789/957/1/manual%20de%20Oslo%20-

%20Directrizes%20para%20a%20Colecta%20

e%20Interpreta%C3%A7%C3%A3o%20de%20

Dados%20sobre%20Inova%C3%A7%C3%A3o.

pdf. Accessed April 16, 2019.

Oliveira, P. H. de. (2013). Eficiência em

inteligência competitiva no contexto das

organizações brasileiras: uma abordagem pela

VBR e DEA (Doctoral Thesis). Online at:

http://hdl.handle.net/1843/BUOS-99YF9R.

Accessed March 27, 2018.

O'Leary, D. E. (2013). Artificial intelligence and

big data. IEEE intelligent systems, 28(2), 96-

Online Available at:

https://www.computer.org/csdl/magazine/ex/2

/02/mex2013020096/13rRUyYjK8t.

Accessed April 10, 2018.

O’Sullivan, D., Dooley, L. (2008). Applying

innovation. Thousand Oaks, CA: SAGE.

Rothberg, H. N. & Erickson, G. S. (2017). Big data

systems: knowledge transfer or intelligence

insights? Journal of Knowledge Management,

(1), 92-112. Online Available at:

https://www.emeraldinsight.com/doi/full/10.1

/JKM-07-2015-0300. Accessed May 28,

Senge, P. M. (1997). The fifth

discipline. Measuring Business

Excellence, 1(3), 46-51. Online Available at:

https://www.emeraldinsight.com/doi/pdfplus/1

1108/eb025496. Accessed April 9, 2018.

Shaker, S. M., & Gembicki, M. P. (1999). The

warroom guide to competitive intelligence.

McGraw-Hill Companies.

Shi, Z., Lee, G. M. & Whinston, A. B. (2016).

Toward a better measure of business

proximity: topic modeling for industry

intelligence. MIS Quarterly, 40(4), 2016.

Online Available at:

https://aisel.aisnet.org/misq/vol40/iss4/13/.

Accessed April 16, 2019.

Sonka, S. (2014). Big data and the ag sector: More

than lots of numbers. International Food and

Agribusiness Management Review, 17(1030-

-82967), 1-20. Online Available at:

https://ageconsearch.umn.edu/record/163351/f

iles/20130114.pdf. Accessed August 28, 2017.

Tene, O., & Polonetsky, J. (2012). Privacy in the

age of big data: a time for big decisions. Stan.

L. Rev. Online, 64, 63. Online Available at:

https://heinonline.org/HOL/LandingPage?han

dle=hein.journals/slro64&div=13&id=&page.

Accessed October 10, 2018.

Urbinati, A., Bogers, M., Chiesa, V., & Frattini,

F. (2019). Creating and capturing value from

Big Data: A multiple-case study analysis of

provider companies. Technovation, 84, 21-36.

Online Available at:

https://doi.org/10.1016/j.technovation.2018.07

.004. Accessed May 5, 2020.

Vajjhala, N. R. & Strang, K. D. (2017). Measuring

organizational-fit through socio-cultural big

data. New Mathematics and Natural

Computation, 13(2), 145-158. Online at:

https://www.worldscientific.com/doi/abs/10.11

/S179300571740004X. Accessed May 28,

Vuori, V. (2011). Social media changing the

competitive intelligence process: elicitation of

employees’ competitive knowledge (Doctoral

Thesis). Online Available at:

https://tutcris.tut.fi/portal/files/5109627/vuori

.pdf. Accessed November 3, 2017.

Wei, Q. et al. (2016). A Novel Bipartite Graph

Based Competitiveness Degree Analysis from

Query Logs. ACM Transactions on Knowledge

Discovery from Data (TKDD), 11(2), 21. Online

https://dl.acm.org/citation.cfm?id=2996196.

Accessed May28, 2018.

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.

J. (2017). Big data in smart farming-a

review. Agricultural Systems, 153, 69-80.

Online Available at:

https://www.sciencedirect.com/science/article/

pii/S0308521X16303754. Accessed May14,

Zhang, Y., Zhang, M., Li, J., Liu, G., Yang, M. M.,

& Liu, S. (2020). A bibliometric review of a

decade of research: Big data in business

research-Setting a research agenda. Journal

of Business Research. Online Available at:

https://www.sciencedirect.ez50.periodicos.cap

es.gov.br/science/article/pii/S01482963203074

Accessed December 2, 2020.

Downloads

Published

2021-04-28